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Abstract

We introduce a teacher time allocation model in which teachers allocate their
available instruction time among individual, group, and classroom instruction to
maximize a function of pupils’ test scores. We consider two variants of the model,
one with knowledge spillovers, the other with instruction spillovers. We evaluate
both variants and find that the variant with instruction spillovers performs better,
but requires more assumptions. We also derive teachers’ marginal social welfare
weights for their pupils and examine the influencing factors. The weights are
predominantly positive, indicating teacher efficiency, decrease with higher math
scores, suggesting inequality aversion, and show no significant correlation with
gender, home language, or mother’s education, implying anonymity. These results
appear robust regardless of the presence and type of spillover effects.
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1 Introduction

The distribution of pupils’ educational outcomes results from the inputs of pupils,
teachers, and parents, that are in turn based on their preferences and constraints.
While the constraints, particularly the educational production technology, have been
extensively studied, the preferences of the different agents remain largely unexplored.
Given the crucial role of teachers in education, this paper aims to infer information
about teachers’ preferences, specifically focusing on the marginal social welfare weights
assigned to their pupils.

We introduce a model of teacher time allocation in two variants. Both variants
assume that teachers allocate their available instruction time to maximize a teacher-
specific function of their pupils’ educational outcomes. The variants differ in their
approach to modeling peer effects. One variant assumes knowledge spillovers, where
pupils first transform teacher instruction into knowledge and then share this knowledge
with other pupils. The other variant assumes instruction spillovers, where pupils first
share teacher instruction with other pupils and then transform this instruction into
knowledge. We use the two variants of the model to conduct two empirical exercises.

First, we non-parametrically test the two variants. Both models perform reasonably
well: the behavior of at least two-thirds of the teachers aligns with these models. The
model with instruction spillovers can perform better: if we allow for peer effects, more
than four-fifths of the teachers’ behavior is consistent with the model. However, the
model with instruction spillovers also requires a strong separability assumption that is
rejected by our data.

Second, we shed light on the teachers’ preferences using an inverse optimum ap-
proach. This approach allows us to infer the teachers’ marginal social welfare weights
for each pupil from the first-order conditions. We show that the weights (i) are mostly
positive (indicating efficient teachers), (ii) decrease with test scores for most pupils
(indicating inequality-averse teachers), (iii) do not depend on gender, home language,
and mother’s education (indicating anonymous, unbiased teachers), (iv) decrease more
steeply for more experienced teachers, and (v) are relatively higher for better-performing
students in the final grade.

Our paper contributes to the economics of education literature in at least two ways.
To the best of our knowledge, only one other paper uses a microeconomic model of
teacher time allocation to infer teachers’ objectives. Moreover, our test for anonymity
is, to the best of our knowledge, the first outcome test designed to detect and quantify
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taste-based biases of teachers in education. We discuss two related strands of the
literature — one on the microeconomics of teacher preferences and the other on teacher
biases in education — and highlight our contribution.

With respect to teacher preferences, there is, to the best of our knowledge, only one
paper that uses a model of teacher time allocation to infer the objectives of teachers. In
Brown and Saks (1987), teachers allocate individual instruction time (a private good)
and classroom instruction time (a public good) to maximize the average transformed
test scores of their pupils, subject to a time constraint. They then empirically investi-
gate the effect of instruction time on math and reading scores and use these estimates
to infer teacher preferences, which tend to be strongly egalitarian.

Our paper builds on their work in several ways. First, we add a third instruc-
tion mode—small group instruction—because 93% of the teachers in our data use this
mode.1 Second, we allow for corner solutions as 12.5% of the pupils in our data do
not receive individual instruction time. Third, we introduce endogenous spillovers in
the model. Fourth, we define the marginal social welfare weights flexibly in our model,
enabling us to detect inefficient teachers (with negative weights) and non-anonymous
teachers (with weights that may depend on pupil characteristics besides test scores).
Fifth, we survey the teachers’ marginal productivities directly, rather than estimating
them from the data. This approach is closer to the idea that teachers allocate their
instruction time based on their beliefs about their productivity, which may differ from
actual productivity.2 Sixth, we test the two model variants non-parametrically and
compare their performance to shed light on the plausibility of the different spillover
channels.

With respect to teacher biases, there is a huge literature that has proposed different
ways to detect biases in different areas. Grading is one area where teacher biases could
occur. Non-experimental studies compare teacher grades with central exam grades,
resulting in mixed findings; see, e.g., Lindahl (2007) for Sweden, Lavy (2008) for Israel,
Burgess and Greaves (2013) for England, Botelho, Madeira, and Rangel (2015) for
Brazil, and Triventi (2019) and Alesina et al. (2024) for Italy. Field experiments that
randomly assign pupil attributes (such as names) to exams or essays show discrimination
against lower caste pupils in India (Hanna and Linden, 2012) and Turkish pupils in
Germany (Sprietsma, 2013). In the Netherlands, the evidence is mixed (Van Ewijk,

1The more general model in Brown and Saks (1975) can also incorporate instruction in small groups,
but does not bring the model to the data.

2It also avoids the complex issue of separately identifying teachers’ preferences and constraints.
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2011; Feld, Salamanca, and Hamermesh, 2015).
Besides grading, there are other areas in education where biases may occur. Black

and poor students in the United States are punished more harshly than their peers
involved in the same incidents (Kinsler, 2011; Barrett et al., 2021). Requests to visit a
school in Spain are more likely to receive a response if the child’s name is Spanish rather
than Romanian (de Lafuente, 2021). Placement in special education could potentially
be biased, but evidence suggests the opposite (i.e., too little placement) for minority
students (National Research Council, 2002). Track placement in middle and high school
may also be a source of bias with long-term consequences (see, e.g., Borghans et al.,
2019; Dustmann, Puhani, and Shönberg, 2017), but evidence from the United States is
mixed (Garet and Delany, 1988 versus Lucas and Gamoran, 2002).

In cases of teacher biases, whether in grading or other areas, it is important to
identify who is biased against whom. One avenue of research investigates student-
teacher interactions, focusing on readily observable characteristics. Dee (2005, 2007)
shows that having a ‘similar’ teacher in terms of race or gender impacts students’
achievement and engagement, and symmetrically, having a ‘similar’ student affects
teachers’ perceptions of student performance and behaviors. Ouazad and Page (2011)
report that teachers in the United Kingdom tend to give better grades to students of
their own gender. In contrast, Sprietsma (2013) finds no correlation between observed
teacher characteristics and grading bias in Germany. Similarly, Kinsler (2011) finds
little evidence that black students in the United States are punished differently based
on the race of the teacher or principal. Papageorge, Gershenson, and Kang (2020) find
that teachers are generally overly optimistic about their students’ prospects, but white
teachers are less so with black students.

Our test for anonymity can be seen as an outcome test to detect and quantify
taste-based biases of teachers in education.3 Outcome tests are popular tools to detect
biases in policing and profiling (see, e.g., Persico, 2009), but have, to the best of our
knowledge, not been used to detect biases in education.4 The test is developed to detect
taste-based biases that affect pupils through the preference-based choices of teachers
(such as the allocation of instruction time). However, other channels cannot be detected.
For example, if biases affect pupils through lowering the self-confidence or aspirations

3As biases are assigned to teachers’ preferences, we test for taste-based discrimination (introduced
by Becker, 1957) rather than statistical discrimination (introduced by Arrow, 1972 and Phelps, 1972).

4See Farkas (2003) for an early overview of biases in education.
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of pupils, this will go undetected.5

The remainder of the paper proceeds as follows. In Section 2, we introduce a model
of teacher time allocation along with two variants of spillovers. Section 3 presents
the data, which were specifically collected for this study. Section 4 discusses the non-
parametric tests of the two model variants. Section 5 derives the welfare weights and
examines their determinants. A final section 6 concludes.

2 A model of teacher time allocation

We introduce two variants of a teacher time allocation model. The first variant assumes
peer effects based on knowledge spillovers. For instance, an increase in the private
instruction time of a pupil enhances their knowledge, which may subsequently spill
over to other pupils. The second variant assumes peer effects based on instruction
spillovers. In this case, an increase in the private instruction time of a pupil not only
enhances their knowledge but also allows the instruction itself to spill over to other
pupils, thereby improving their knowledge as well. To present both variants, we first
outline their common components.

A teacher has n pupils, collected in a set N = {1, 2, . . . , n}.6 The set of pupils N

is partitioned in m pupil groups denoted N1, N2, ..., Nm.7 Let k(i) denote the group to
which pupil i belongs and let M = {1, 2, . . . ,m} denote the set of groups.

Teachers have a total amount of instruction time T available for a given subject (e.g.,
math).8 They can allocate their time to (i) individual instruction t = (t1, t2, . . . , tn),
with ti the instruction that only pupil i receives (a private good), (ii) group instruction
g = (g1, g2, . . . , gm), with gk the instruction that only the pupils of group k receive
(a club good), (iii) classroom instruction c, the instruction that all pupils receive (a
public good). We call xi = Hi(ti, gk(i), c) the global instruction received by pupil i,
with Hi a pupil-specific, differentiable, and strictly increasing function of the different

5See, e.g., Carlana (2019) and Papageorge, Gershenson, and Kang (2020) on the impact of teacher
bias on self-confidence and the long-term impact of teacher expectations.

6For ease of exposition, we do not index teachers, even though all elements of the model are teacher-
specific.

7This partitioning is assumed to be given and thus not a choice variable for the teacher. This is not
entirely unrealistic, as most teachers in Flanders allow pupils to self-select in (usually three) groups
depending on their need for extra teacher time (e.g., no extra time needed, possibly extra time needed,
always extra time needed).

8The amount of hours of instruction time per subject is assumed to be exogenous to the teacher
(e.g., it is fixed by, e.g., the school team, the school direction, or the school group).
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instructional activities. In the remaining time ri = T − (ti + gk(i) + c), pupil i is not
instructed by the teacher and processes the received individual, group and classroom
autonomously. The budget constraint of the teacher is

∑
i∈N ti +

∑
k∈M gk + c ≤ T .

Let si be the test score that pupil i achieves in the subject under consideration;
the vector s = (s1, s2, . . . , sn) collects all test scores. The test scores of pupils depend
on the time allocation of the teacher and the peer effects. In the next two sections,
we will provide more details. Each teacher allocates the available instruction time over
pupils to maximize V (s), a differentiable evaluation function of test scores, subject to
the teacher’s budget constraint and non-negativity constraints. The Lagrangian is

V (s) + λb(T −
∑
i∈N

ti −
∑
k∈M

gk − c) +
∑
i∈N

λt,iti +
∑
k∈M

λg,kgk + λcc, (1)

with λb ≥ 0, λt,1, λt,2, . . . , λt,n ≥ 0, λg,1, λg,2, . . . , λg,m ≥ 0, and λc ≥ 0 the multipliers
of the budget constraint and the non-negativity constraints for the different instruction
activities.

2.1 Knowledge spillovers

In case of knowledge spillovers, educational production is generated by9

si = Fi(xi, ri) + Pi(s1, s2, . . . , sn),

= Fi(Hi(ti, gk(i), c), ri) + Pi(s1, s2, . . . , sn), (2)

for each pupil i, with (i) Fi a differentiable production function of global instruction
xi and autonomous processing time ri and (ii) Pi a differentiable peer effect function
capturing knowledge spillovers.10 As teachers allocate instruction time on the basis of
beliefs, the educational production functions Fi capture what they believe they produce,
not what they effectively achieve. Both are likely to converge over time, but this
convergence process may proceed in different ways: teachers updating their beliefs on
the basis of what their pupils achieve or pupils adjusting their realizations on the basis

9The production function (and, later on also the teacher’s evaluation function) can also depend on
the initial test scores, say, at the beginning of the school year. For ease of exposition, we do not make
this dependence explicit here, but will come back to it in the empirics.

10Educational production is weakly separable in instructional activities and autonomous processing
time. This restriction is not needed for the current model with knowledge spillovers, but is needed
(and therefore already introduced here) in the model with instructional spillovers of the next section.
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of the teacher’s beliefs (e.g., self-fulfilling prophecies).
For ease of exposition, we abbreviate the partial derivatives of the functions V , Fi,

Hi and Pi with respect to its arguments as respectively vi, fix, fir, hit, hig, hic, and pij.
We assume (i) fix, fir, hit, hig, hic > 0 and (ii) pij ≥ 0 for all i, j, pij = pji for all i, j,
and pii = 0 for all i, and

∑
j∈N pij < 1 for all i. Moreover, we define πij as the ij-th

element of the matrix Π = (I −∇P )−1, with I the n× n identity matrix and ∇P the
n× n matrix of marginal peer effects pij.11

Theorem 1 provides the first-order conditions of each teacher. A proof can be found
in Appendix A.
Theorem 1. The first-order conditions of the Lagrangian defined in equation (1) using
an educational production process with knowledge spillovers defined in equation (2) are

(fjxhjt − fjr)
∑

i∈N viπij − λb + λt,j = 0, for j inN,∑
j∈Nk

(fjxhjg − fjr)
∑

i∈N viπij − λb + λg,k = 0, for k inM,∑
j∈N(fjxhjc − fjr)

∑
i∈N viπij − λb + λc = 0,

with λb ≥ 0, λt,1, λt,2, . . . , λt,n ≥ 0, λg,1, λg,2, . . . , λg,m ≥ 0, and λc ≥ 0.
Because group and classroom instruction are (local) public goods, we can deduce

Samuelson conditions for optimal provision, requiring that the marginal rates of tech-
nical substitution (adjusted for corners solutions) must sum up to one. Corollary 1
summarizes these adjusted Samuelson conditions.
Corollary 1. The first-order conditions imply

∑
j∈Nk

fjxhjg − fjr
fjxhjt − fjr

· λb − λt,j

λb − λg,k

= 1,

for all groups k in M and

∑
j∈N

fjxhjc − fjr
fjxhjt − fjr

· λb − λt,j

λb − λc

= 1,

for the class.
11The assumptions on ∇P imply that the matrix Π exists, is symmetric, with non-negative elements,

and its diagonal elements are strictly positive and larger than the off-diagonal elements.
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2.2 Instruction spillovers

In case of instruction spillovers, educational production is generated by

si = Fi(xi, ri), (3)

for each pupil i, with Fi as defined before, but instruction defined as xi = Hi(ti, gk(i), c)+

Pi(x1, x2, . . . , xn), with Pi a differentiable and non-decreasing peer effect function cap-
turing instruction spillovers.12 Theorem 2 provides the first-order conditions. A proof
can be found in Appendix B.
Theorem 2. The first-order conditions of the Lagrangian defined in equation (1) using
an educational production process with instruction spillovers defined in equation (3)
are

∑
i∈N vifixπijhjt − vjfjr − λb + λt,j = 0, for j inN,∑

i∈N vifix
∑

j∈Nk
πijhjg −

∑
i∈Nk

vifir − λb + λg,k = 0, for k inM,∑
i∈N vifix

∑
j∈N πijhjc −

∑
i∈N vifir − λb + λc = 0,

with λb ≥ 0, λt,1, λt,2, . . . , λt,n ≥ 0, λg,1, λg,2, . . . , λg,m ≥ 0, and λc ≥ 0.
There is no obvious way to rewrite the first-order conditions as Samuelson condi-

tions. The reason is that one can increase, e.g., c and reduce every pupil’s private time
ti to keep everyone’s instruction xi constant, but this will not necessarily keep the test
scores constant as both c and xi influence test scores via ri = T − tigk(i) − c.13

3 The data

To collect the data, we contacted all Flemish primary schools to participate in a survey
about teacher time allocation for mathematics.14 A total of 121 teachers from 29
schools serving more than 2500 pupils participated. The survey was conducted through
a questionnaire completed by the teachers for all pupils in their classes.

12Note that, analogous to knowledge spillovers, instruction spillovers are frictionless, i.e., they do
not come at the cost of processing time.

13Suppose we would model instruction spillovers as si = Fi(xi) with ri with xi = Hi(ti, gk(i), c, ri)+
Pi(x1, x2, . . . , xn) then this model would become equivalent and empirically indistinguishable to the
model with knowledge spillovers.

14Flanders is the Dutch-speaking northern part of Belgium.
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3.1 The questionnaire

The questionnaire consisted of five parts. The first part focused on the current level of
mathematics of the pupils and their progress in the subject. The second part aimed to
gather information on the teacher’s time allocation for mathematics instruction. The
third and fifth part inquired about the background of respectively pupils and teachers.
In between both parts, the fourth part collected data on the class structure. The survey
was conducted in Dutch; Appendix C provides an English translation of the relevant
questions in each part.

In the first part, teachers were asked to evaluate (on a 6-point scale ranging from
very weak to very strong) the overall mathematics knowledge and skill of their students
at the beginning of the school year and currently (the survey was conducted in May,
which is close to the end of the school year). Teachers were also asked to assess the
current level of their pupils in mathematics as well as their ability to make progress in
mathematics. For the level, they were asked to provide for each pupil a score (between 0
and 100) for mathematics if their overall mathematics knowledge and skills were tested
today.15 For the progress, teachers were asked (on a 5-point scale ranging from very
slowly to very fast) how quickly each student would master a mathematics exercise in
three different scenarios: (i) if explained individually to the pupil, (ii) if explained in
the classroom, and (iii) if they had to study it themselves. Teachers were also asked to
convert each progress level of the five-point scale (very slowly to very fast) into points
(on the 0-100 scale) if they had one extra instruction hour per week.

The second part asked the teachers about how many hours per week they spend on
mathematics, as well as how many minutes there are in a class hour. We also asked what
percentage of their time they spend on individual instruction, classroom instruction,
and self-study. Next, we asked on a five-point scale (ranging from never to always) how
often they spend individual time with each student for mathematics in a typical week.
Teachers were also asked to convert the items of the five-point scale into minutes.

In the third part, teachers were asked to provide the following background details
for each pupil: gender, grade retention, whether the pupil speaks Dutch at home,
and whether the mother has a degree in higher secondary education.16 As teachers
may not know the latter two perfectly, we introduced a four-point scale (certainly not,

15The survey also included questions about whether language skills form a barrier for students in
learning mathematics, as well as whether there were other reasons for low performance.

16The latter two characteristics are also collected by the department of education (in the framework
of equal educational opportunities).
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Variable N Mean Std. Dev Min Max

Teachers
Class info Class size 121 21.18 4.47 11 34

Grade 119 3.51 1.66 1 6
Time use Weekly math hours 120 6.20 0.84 5 10

Minutes per class hour 119 45.54 5.89 25 60
% Individual instruction 121 34.31 18.56 0 95
% Classroom instruction 121 45.15 18.17 0 90
% All pupils self study 121 19.71 16.70 0 65

Experience Experience in this grade 121 8.41 7.48 0 32
Experience in primary school 121 13.40 9.07 0 40
Experience in teaching 121 13.96 8.87 1 40

Demographics Female 120 0.93 0.25 0 1

Pupils
Pupil info Female 2408 0.50 0.50 0 1

Grade retention 2547 0.16 0.37 0 1
Score 2501 75.35 19.20 0 100
Individual time 2277 66.09 85.84 0 1400

Learning speed Progress individual instr 2033 13.28 15.72 0 92
Progress class instr 2043 7.91 12.06 0 90
Progress self study 2052 4.20 10.71 -5 90

Table 1: Descriptive statistics for teachers and pupils (continuous variables)

probably not, probably yes, certainly yes). Similarly, the survey included questions
in the fifth part about the following teacher characteristics: gender, education level,
teaching experience, and their own background (language, education degree of mother)
when they attended primary school.

In the fourth part, the survey inquired about the usual classroom setup when stu-
dents work autonomously, e.g., everyone at a separate desk, pupils sit in (fixed) pairs,
or in (fixed) groups. In the latter case, we also asked for group sizes.

3.2 Descriptive statistics

Tables 1 and 2 provide the descriptive statistics. In Table 1 we can see that the average
class size is around 21 pupils, with the distribution of grades relatively balanced across
the sample. Weekly math instruction averages around 6 hours, each hour consisting
of 46 minutes of effectively teaching. The majority of instructional time is spent in
classroom instruction (45.15%), followed by individual instruction time (34.31%) and
self-study (19.71%).
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Teacher’s experience is measured in terms of years of experience in the current grade,
in primary school, and in total. On average, teachers have 8 years of experience in their
current grade and 13 years in primary school. The total years of teaching experience is
very similar to the years in primary school. The majority of teachers in the sample are
female (112 teachers), with only 8 male teachers.

For the pupils, roughly half of the sample is male (1211 pupils), and about 19.4% of
the pupils have repeated a grade. The average reported math score is 75. The average
time spent per pupil by the teacher (individual time) is 66 minutes, with substantial
variation as indicated by a standard deviation of 85.84. The minimum recorded time is 0
minutes, while the maximum is 1400 minutes, suggesting large disparities in individual
instruction time. Teachers in general report significantly more time spent per pupil
than available for individual instruction time. In Appendix F, we discuss how we dealt
with this.17

The study progress of pupils is captured through three distinct measures: progress
in individual instruction time, progress via class instruction time, and progress in self-
study. As expected, teachers report that pupils have on average the highest progress
in individual instruction (progress individual instr), with a mean score of 13 and a
maximum score of 92. Progress in class instruction (progress class instr) was slightly
lower, averaging around 8, while progress in self-study (progress self study) was the
lowest at 4, with a minimum of -5, indicating that some pupils experience regress in
this category.

The standard deviations for these progress measures indicate substantial variability
across the sample. Some teachers also seem to have misunderstood the question report-
ing progress of 90 points or more (with a point scale between 0 and 100). However,
the theoretical model is based on ratios of these numbers. So, systematic misreporting
should not be an issue if the three measures are misreported with approximately the
same factor.

In Table 2, we can see that the majority of teachers hold a professional bachelor’s
degree (94 teachers), while only 1 teacher holds a master’s degree. Most teachers spoke
Dutch at home as a child (117 teachers). Regarding the mother’s education, 86 teachers
reported that their mother certainly had a high school diploma, while 18 reported the

17Note that the exact instruction time is often overstated by teachers. This plays a role only in
the testing of the model for teachers who work both one-on-one and in small groups, but not for the
computation of the marginal welfare weights (which are based only on whether pupils receive time) or
not.
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Teachers

High school Prof. bachelor Aca. bachelor Master
Education level 7

(5.9%)
94

(79.0%)
16

(13.4%)
1

(0.8%)
Cert. no Prob. no Prob. yes Cert. yes

Mother diploma 18
(15.4%)

11
(9.4%)

2
(1.7%)

86
(73.5%)

Dutch home 1
(0.8%)

0
(0%)

1
(0.8%)

117
(98.3%)

1-on-1 Group Both
Individual time 8

(6.8%)
32

(27.1%)
78

(66.1%)

Pupils

Weak Rath. Weak Average Rath. Strong Strong
Math level now 243

(9.5%)
391

(15.4%)
798

(31.3%)
607

(23.8%)
508

(19.9%)
Math level begin year 303

(11.9%)
427

(16.8%)
828

(32.6%)
529

(20.8%)
456

(17.9%)
Cert. no Prob. no Prob. yes Cert. yes

Mother diploma 132
(6.8%)

260
(13.4%)

423
(21.7%)

1131
(58.1%)

Dutch home 453
(20.2%)

266
(11.9%)

188
(8.4%)

1334
(59.5%)

Big issue Small issue No issue
Dutch level 337

(13.3%)
583

(22.9%)
1623

(63.8%)

Table 2: Descriptive statistics for teachers and pupils (categorical variables)
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opposite.
On top of test scores, we also asked an ordinal question on math proficiency at the

beginning and the end of the school year. In general, it seems that more pupils obtain
a higher level in May then at the start of the year.

Teachers report that a majority of their pupils (59.5%) certainly speaks Dutch at
home, while 20% certainly does not speak Dutch at home. For 1131 pupils the teachers
report that the mother certainly holds a degree in higher secondary education, while
for 132 pupils it is the opposite. In terms of language being an obstacle for learning
math, 1623 pupils were reported to not have issues, for 583 it was a small issue, and
for a substantial 337 pupils it was a big issue.

As is clear from these descriptive statistics, we have for certain questions some
missing variables. In the sequel we will use (i) 1805 pupils with non-missing variables on
all relevant questions to test the model and (ii) 1189 pupils with computable marginal
welfare weights to analyze its drivers. The descriptive statistics for these pupils are
reported in Appendices D.1 and D.2, respectively.

4 Testing the model

The data reveals that classroom instruction time is strictly positive for all teachers (so,
c > 0 and hence λc = 0). Moreover, the data also reveals that some pupils or groups
of pupils get private or group instruction time (so, tj > 0 and hence λt,j = 0 or gk > 0

and hence λg,k = 0). Also the budget constraint holds with equality (hence λb > 0).18

Let [·] be equal to one if the statement between brackets is true and zero otherwise.
Corollary 3 rewrites the first-order conditions of theorems 1 and 2.
Corollary 2. The first-order conditions of theorem 1 can be written as (corollary 2.1)

(fjxhjt − fjr)
∑

i∈N ṽiπij − 1 + λ̃t,j × [tj = 0] = 0, for j inN,∑
j∈Nk

(fjxhjg − fjr)
∑

i∈N ṽiπij − 1 + λ̃g,k × [gk = 0] = 0, for k inM,∑
j∈N(fjxhjc − fjr)

∑
i∈N ṽiπij − 1 = 0,

18The budget constraint holds either by assumption or by construction. Appendix F provides more
details on the time assignment in the data.
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and the first-order conditions of theorem 2 can be written as (corollary 2.2)

∑
i∈N ṽifixπijhjt − ṽjfjr − 1 + λ̃t,j × [tj = 0] = 0, for j inN,∑

i∈N ṽifix
∑

j∈Nk
πijhjg −

∑
i∈Nk

ṽifir − 1 + λ̃g,k × [gk = 0] = 0, for k inM,∑
i∈N ṽifix

∑
j∈N πijhjc −

∑
i∈N ṽifir − 1 = 0,

with λ̃t,j = λt,j/λb ≥ 0, λ̃g,k = λg,k/λb ≥ 0, and ṽi = vi/λb.
Before we discuss the results, we add some remarks.
First, besides data on fjr, we collected data on the products fjxhjt, fjxhjg, fjxhjc

for the different pupils of each teacher. While these products suffice to test the model
with knowledge spillovers (corollary 2.1), we need the separate factors to test the model
with instruction spillovers (corollary 2.2). To do so, we assume hjt = 1 such that the
reported products fjxhjt allow to deduce fjx. We then compute the hjc’s by dividing
the reported fjxhjc by the deduced fjx. Finally, as we do not collect data on the
productivity of instruction in small groups, we assume that it is more efficient than
classroom instruction, but less efficient than individual instruction, that is hjg = hjc +

α(1− hjc) with α (an unknown parameter) between zero and one.
Second, to test the two models in their most flexible way we plug in the known vari-

ables (fjx, fjr, hjt, hjg, hjc, tj, gk) in the first-order conditions and check whether there
exist unknown variables (ṽi, πij, λ̃t,j, λ̃g,k, and α) such that the first-order conditions
are satisfied. If we replace ṽiπij by δj everywhere in corollary 2.1, then it is clear that
testing the first-order conditions does not require to search for unknown variables ṽi

and πij, but for unknown δj. This considerably simplifies the test, but also highlights
that the underlying welfare weights and peer effects do not matter to test the model
with knowledge spillovers. This is not true, however, for the model with instruction
spillovers, so we will test it under different peer effect restrictions. The most restrictive
version is to assume that there are no peer effects and the least restrictive version is
to assume that the peer effects can be any non-negative scalar (flexible peer effects).
In between, we consider two possibilities. One possibility is called fixed peer effects:
it assumes that the off-diagonal elements of the matrix ∇P are the same.19 Another
possibility is called block peer effects: it assumes that only pupils who receive the same
individual instruction time (an ordinal variable) influence each other as they are more
likely to sit together. So, the different blocks of pupils will have the same peer effect,

19This additional property implies that the diagonal elements of the matrix Π are the same and that
the off-diagonal elements are the same.
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knowledge spillovers 1–on–1 group both overall
all peer effects 0.0% 80.77% 67.65% 67.68%
instruction spillovers 1-on-1 group both overall
no peer effects 0.0% 80.77% 67.65% 67.68%
block peer effects 60.00% 92.31% 73.53% 77.78%
fixed peer effects 20.0% 92.31% 79.41% 79.80%
flexible peer effects* 60.00% 92.31% 79.41% 81.82%

*The reported percentages can best be interpreted as lower bounds.

Table 3: Percentages of teachers whose behavior is consistent with the different models

which may differ over the blocks. These two intermediate possibilities cannot be ranked
a priori: block peer effects are more flexible in one dimension (peer effects may differ
over blocks), but less flexible in another (no peer effects between blocks).

Third, while all teachers allocate time to classroom instruction, not all teachers
allocate time to individual pupils (1–to–1) or to small groups of pupils (groups). Out
of 99 teachers, 68 teachers use both methods. Among the remaining 31 teachers, 5
teachers mostly employ 1-to-1 and 26 teachers mostly use groups.20

Table 3 shows the percentage of teachers that satisfies the first-order conditions un-
der different peer effect models (in rows). Testing the model with instruction spillovers
and (flexible) peer effects is numerically challenging, so the reported percentages can
best be interpreted as lower bounds.21

First, we focus on the overall performance reported in the last column. Recall that
the peer effect structure does not matter for the model with knowledge spillovers. We
find that two thirds (67.68%) of the teachers can satisfy the first-order conditions of
the model with knowledge spillovers (irrespective of the peer effect structure). Because
both models coincide if there are no peer effects, this percentage exactly returns if
we test the model with instruction spillovers with no peer effects. Yet, if we allow
for peer effects, this percentage further increases. The intermediate fixed and block
peer effect structures have only one extra degree of freedom, but add at least 10% of

20For the 31 teachers who do not instruct both individual pupils and small groups of pupils, the
corresponding time variables are set to zero in the model.

21For fixed and block peer effects we know enough properties of the inverse of the peer-effect matrix
that we can estimate this directly. For the free peer- effect matrix we have not yet found a way
to do this. Therefore, we need to invert the peer effect matrix in optimization that yields a poorly
conditioned objective function.
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teachers that now also satisfy the conditions. Fixed peer effects seem to offer slightly
more flexibility than block peer effects (2% extra teachers). Fully flexible peer effects
require many extra degrees of freedom, but only seem to offer a marginal advantage
over block and fixed peer effects (another 2% extra teachers compared to fixed peer
effects). Overall, the model with instruction spillovers fares better, but, as explained
before, it also assumes a weakly separable structure of the educational production that
is not required in case of knowledge spillovers. So, its out-performance is ‘bought’ by
imposing functional form restrictions.

Second, we look at the performance for the different types of private instruction
reported in the first three columns. Both models have difficulties to justify the behavior
of (the limited number of) teachers who use a one-to-one method. The opposite is true
for the teachers who mostly use small groups.

5 The marginal welfare weights and its drivers

In this section we compute and analyze the marginal welfare weights of teachers (nor-
malized by the Lagrange multiplier, that is, vi/λb’s) based only on the first order condi-
tions for individual instruction time. We split up our analysis into two parts, depending
on whether we include or not peer effects. In each part, we will investigate whether
teachers are efficient (positive weights), inequality-averse (weights that decrease with
test scores), and impartial (same weights for pupils with the same test score). In the fi-
nal part, we examine whether there is substantial heterogeneity in these welfare weights
across grade levels and teacher experience.

5.1 Without peer effects

In the absence of peer effects, both models coincide. We first compute the marginal
welfare weights (for pupils whose individual instruction time is non-zero). Figure 1
shows the histogram. The percentage of pupils with strictly positive weights is equal
to 98%. Hence, for 98% of the pupils, teachers satisfy the monotonicity principle that
higher scores are better.

Second, we investigate how the weights vary over math scores using a flexible spline,
i.e., a function defined by polynomials that are estimated over intervals of math scores.22

22We also include teacher fixed effects, so the exact econometric specification is wij = αj+f(s)+εij ,
with wij = vij/λbj the weight of pupil i of teacher j, αj the teacher-fixed effects, f the spline, and ϵij
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Figure 1: Histogram of the marginal welfare weights

Figure 2 shows nine splines based on polynomials of second, third or fourth degree
estimated over two, three, or four math score intervals (based on quantiles). The
dashed vertical lines indicate the quintiles of the math score distribution. We focus
on the middle panel (third degree polynomials estimated over three intervals).23 The
weights tend to first increase for pupils with very low scores (3.78% of the pupils between
0 and 30) and to decrease again afterwards. The decrease is initially quick (for 31.60%
of the pupils between 30 and 70), then flat or even slightly increasing (for 50.88% of
the pupils between 70 and 90), and then quickly decreasing again (for 13.75% of the
pupils above 90). While standard errors are large, the spline suggests that teachers are
inequality averse over a large interval (for 96.22% of the pupils above 30), but only in
a very mild way as for most (60 % to 80%) pupils the spline is rather flat. In other
words, they give priority to pupils with lower math scores, ceteris paribus.

Third, we include other pupil variables in addition to the spline for math scores.24

Table 4 shows the results. First, the impact of initial math levels (dummies based
on a five-point scale) is negative and statistically significant. A negative sign means

error terms.
23The pattern that we describe occurs in the middle and right-hand panels (based on third and fourth

degree polynomials), but not in the left-hand panels (based on second-degree polynomials) where we
observe a steady decrease over the whole interval.

24We again include teacher fixed effects and use the middle spline of Figure 2 (with third degree
polynomials estimated over three intervals) as the benchmark spline.
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Figure 2: Marginal welfare weights as a function of math scores (without peer effects)
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that, among two pupils with the same math level at the end of the year, teachers give
a higher priority to the pupil that was initially weaker. If anything, we expected a
positive sign, which would reflect that teachers do not only care about current math
levels, but also about their progress. Indeed, among two pupils with the same math
level at the end of the year, teachers would then give a higher priority to the pupil that
was initially stronger (and hence that made less progress). Second, none of the other
pupil variables (gender, Dutch at home, degree mother) are statistically significant,
suggesting that there is no taste-based discrimination on the basis of these variables.
Third, the inclusion of the spline does not seem to affect the results significantly.25

5.2 With peer effects

To deal with peer effects, we proceed as follows. We first resample with replacement
(bootstrap) our data 200 times at the class level (keeping the total number of classes
constant). For each bootstrap sample, we use a grid for the peer effect parameters
leading to either 100 or 1028 possible peer effect matrices (Π’s) in case of, respectively,
fixed and block peer effects.26 We then compute, for each matrix, the teachers’ welfare
weights for their pupils. For each resulting vector of welfare weights we can repeat
the previous exercise, that is, estimate a spline (to visualize how the weights vary over
math scores), with or without other pupil characteristics (to test for taste-based biases
of teachers).

Each spline in Figure 3 is a third degree polynomial estimated over three intervals
(the benchmark case that we also discussed in the previous section). The panels to
the left are based on knowledge spillovers and the panels to the right on information
spillovers. The patterns are very similar, but the standard errors are somewhat lower
in case of information spillovers. Next, the top panels are based on fixed peer effects
and the bottom panels on block peer effects. Again the differences are small: block
peer effects seem to flatten the pattern somewhat, especially for high math scores, but
add more noise. Finally, if we compare the splines of Figure 3 with the middle one in
Figure 2 that uses the same specification, the differences are negligible.

Tables 5 and 6 present (bootstrapped) regression results under fixed and block
knowledge spillovers, respectively. Each table shows the mean of the estimated coef-

25Of course, the dummies for initial math level become somewhat stronger as expected.
26For fixed peer effects, there is one peer effect parameter, between 0 and 1, leading to a grid

0, 0.01, . . . , 0.99 of 100 values. For block peer effects, there are 4 parameter values in each of the 5
blocks leading to 1024 combinations.
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Spec 1 Spec 2 Spec 3 Spec 4 Spec 5
Math level begin year
Rather weak -0.027∗

(0.015)
-0.027∗
(0.015)

-0.027∗
(0.015)

-0.029∗∗
(0.015)

-0.043∗∗∗
(0.013)

Average -0.043∗∗∗
(0.015)

-0.043∗∗∗
(0.015)

-0.043∗∗∗
(0.015)

-0.050∗∗∗
(0.015)

-0.064∗∗∗
(0.012)

Rather Strong -0.046∗∗
(0.018)

-0.046∗∗
(0.019)

-0.046∗∗
(0.019)

-0.053∗∗∗
(0.019)

-0.066∗∗∗
(0.014)

Strong -0.046∗∗
(0.022)

-0.046∗∗
(0.022)

-0.047∗∗
(0.022)

-0.056∗∗
(0.022)

-0.067∗∗∗
(0.015)

Female -0.001
(0.007)

-0.001
(0.007)

-0.000
(0.007)

-0.001
(0.007)

Dutch home
Probably no -0.012

(0.015)
-0.015
(0.015)

-0.015
(0.015)

Probably yes -0.000
(0.019)

0.002
(0.019)

0.000
(0.019)

Certainly yes -0.004
(0.012)

-0.007
(0.013)

-0.007
(0.013)

Mother diploma
Probably no 0.026

(0.018)
0.022

(0.018)
Probably yes -0.019

(0.018)
-0.021
(0.018)

Certainly yes 0.020
(0.017)

0.015
(0.017)

Spline Yes Yes Yes Yes No
Teacher Fixed Effects Yes Yes Yes Yes Yes

Table 4: Drivers of the marginal welfare weights (without peer effects)
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Figure 3: Marginal welfare weights as a function of math scores (with peer effects)
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ficients together with the 95% confidence intervals. Regression results for (fixed and
block) instruction peer effects turn out to be very similar and can be found in Appendix
G.

Table 5 shows the results for fixed knowledge spillovers. Compared to the regressions
without peer effects, no new insights are obtained. The estimated coefficients for the
initial math scores are somewhat larger (in absolute value), but also the standard errors
are somewhat larger. Also the sign and magnitude of the estimated coefficients for the
other pupil characteristics remain similar, suggesting no taste-based biases. Omitting
the spline leads to a strong impact of initial math level, stronger than without peer
effects.

Spec 1 Spec 2 Spec 3 Spec 4 Spec 5
Math level begin year
Rather weak -0.034

(-0.077, 0.001)
-0.033

(-0.074, 0.005)
-0.035

(-0.077, -0.001)
-0.037

(-0.080, -0.001)
-0.055

(-0.098, -0.023)
Average -0.055

(-0.112, -0.003)
-0.055

(-0.111, -0.005)
-0.053

(-0.108, -0.008)
-0.064

(-0.132, -0.016)
-0.084

(-0.143, -0.029)
Rather Strong -0.056

(-0.118, -0.005)
-0.060

(-0.127, -0.004)
-0.057

(-0.119, -0.004)
-0.070

(-0.152, -0.015)
-0.086

(-0.161, -0.031)
Strong -0.053

(-0.125, 0.018)
-0.057

(-0.121, -0.000)
-0.056

(-0.120, 0.024)
-0.071

(-0.151, -0.000)
-0.090

(-0.170, -0.011)
Female -0.002

(-0.025, 0.019)
-0.000

(-0.022, 0.021)
-0.001

(-0.023, 0.020)
-0.000

(-0.024, 0.018)
Dutch home
Probably no -0.016

(-0.038, 0.004)
-0.019

(-0.041, 0.002)
-0.018

(-0.045, 0.004)
Probably yes -0.001

(-0.028, 0.025)
0.003

(-0.027, 0.038)
0.003

(-0.031, 0.032)
Certainly yes -0.006

(-0.030, 0.019)
-0.009

(-0.032, 0.017)
-0.008

(-0.030, 0.013)
Mother diploma
Probably no 0.031

(-0.012, 0.082)
0.027

(-0.010, 0.077)
Probably yes -0.024

(-0.098, 0.038)
-0.025

(-0.087, 0.034)
Certainly yes 0.025

(-0.024, 0.085)
0.018

(-0.024, 0.073)
Spline Yes Yes Yes Yes No
Teacher Fixed Effects Yes Yes Yes Yes Yes

Table 5: Drivers of the marginal welfare weights (with fixed knowledge peer effects).

Table 6 shows the results for block knowledge spillovers. Compared to the other
regression results (without peer effect and with fixed knowledge peer effects), the es-
timates for initial math level are lower (in absolute value) and no longer significant.
Estimates for the remaining variables remain largely stable however. None of the co-
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efficients are significant at the 95% level, still, initial level continues to appear most
informative. Omitting the spline leads again to a stronger impact of initial math level,
but, as mentioned before, none of the estimates are statistically significant.

Spec 1 Spec 2 Spec 3 Spec 4 Spec 5
Math level begin year
Rather weak -0.013

(-0.050, 0.025)
-0.013

(-0.051, 0.026)
-0.014

(-0.052, 0.021)
-0.016

(-0.056, 0.021)
-0.027

(-0.073, 0.019)
Average -0.029

(-0.090, 0.033)
-0.029

(-0.090, 0.033)
-0.029

(-0.088, 0.031)
-0.039

(-0.102, 0.024)
-0.047

(-0.127, 0.035)
Rather Strong -0.033

(-0.115, 0.049)
-0.036

(-0.118, 0.048)
-0.034

(-0.115, 0.050)
-0.045

(-0.130, 0.038)
-0.050

(-0.155, 0.056)
Strong -0.038

(-0.140, 0.062)
-0.041

(-0.137, 0.057)
-0.041

(-0.141, 0.056)
-0.053

(-0.157, 0.046)
-0.061

(-0.176, 0.054)
Female -0.001

(-0.019, 0.017)
0.000

(-0.017, 0.019)
-0.001

(-0.018, 0.017)
0.001

(-0.017, 0.017)
Dutch home
Probably no -0.013

(-0.041, 0.016)
-0.016

(-0.044, 0.011)
-0.016

(-0.046, 0.013)
Probably yes -0.001

(-0.038, 0.035)
0.001

(-0.038, 0.040)
0.002

(-0.039, 0.040)
Certainly yes -0.008

(-0.028, 0.015)
-0.014

(-0.037, 0.010)
-0.012

(-0.036, 0.009)
Mother diploma
Probably no 0.021

(-0.017, 0.060)
0.019

(-0.016, 0.056)
Probably yes -0.023

(-0.088, 0.029)
-0.023

(-0.082, 0.028)
Certainly yes 0.022

(-0.018, 0.066)
0.016

(-0.022, 0.058)
Spline Yes Yes Yes Yes No
Teacher Fixed Effects Yes Yes Yes Yes Yes

Table 6: Drivers of the marginal welfare weights (with block knowledge peer effects).

Overall, introducing peer effects seems to add noise, as expected, but does not
change the main results.

5.3 Heterogeneity in welfare weights

In this section, we examine whether there is heterogeneity in welfare weights by the
grade level of the class and the teacher’s overall teaching experience. We abstract from
peer effects in this analysis because, based on the previous section, we believe their
inclusion would only introduce noise. For the grade-level analysis, we group the first
and second years of primary school together as first grade, the third and fourth years
as second grade, and the fifth and sixth years together as third grade.
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The results by grade level are presented in Figure 4. As shown in Figure 4a, the
third grade has substantially higher welfare weights at both the lower and upper ends
of the test score distribution. The weights for third grade also appear to increase at
the right tail, suggesting that teachers place greater value on high performance in the
final grade. In contrast, the welfare weights for first and second grades are mostly
monotonically decreasing across the score distribution. The slight increase in welfare
weights at the lower end of the score distribution observed in earlier sections appears
to have disappeared. Figure 4b displays the kernel density estimates of the welfare
weights. The higher average weights in third grade appear to be driven by a second
peak around 0.5, which is less prominent in the other groups. Additionally, the second
grade appears to have the highest number of violations of the Pareto principle.

Figure 4: Heterogeneity per grade level

(a) vi
λb

as a function of test scores (b) Kernel density of vi
λb

For the heterogeneity analysis by teaching experience, we divide teachers into two
groups: those with more and those with less than the median level of experience. The
results are presented in Figure 5. As shown in Figure 5a, more experienced teachers
assign higher welfare weights to their students, except for the highest-performing ones.
Their welfare weights decrease monotonically across the score distribution, suggesting
greater inequality aversion. In contrast, less experienced teachers appear less inequality-
averse, with lower weights assigned to students at the bottom of the score distribution.
Figure 5b shows that less experienced teachers violate the Pareto principle more fre-
quently. Meanwhile, more experienced teachers exhibit a more profound second peak
around 0.5 in the distribution of welfare weights.
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Figure 5: Heterogeneity per teacher experience

(a) vi
λb

as a function of test scores (b) Kernel density of vi
λb

6 Conclusion

We introduced a teacher time allocation model in which teachers allocate their avail-
able instruction time over individual, group, and classroom instruction to maximize a
function of pupils’ test scores. We combine this model with two different views on peer
effects based on either knowledge or instruction spillovers.

We collect data on the time allocation and the marginal productivities of the differ-
ent instruction modes of Flemish teachers in primary education to test the optimality
conditions under different peer effect structures. The model with instruction spillovers
performs better overall, but also requires more assumptions.

We also infer the teachers’ marginal social welfare weights of their pupils in both
model variants and analyze the drivers. In the absence of peer effects, the weights
are (almost always) strictly positive (hence, teachers are efficient), decrease with math
scores for most pupils (teachers are inequality averse), and do not significantly depend
on some other pupil variables (teachers are impartial with respect to gender, home lan-
guage, and mother’s education). Peer effects do not seem to alter these results. We find
that teachers in the final grade place greater weight on high-achieving students com-
pared to those in earlier grades. Additionally, more experienced teachers appear to be
more inequality-averse, assigning higher welfare weights to lower-performing students.
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A Proof of theorem 1

In case of knowledge spillovers, the test scores are defined by

si = Fi(xi, ri) + Pi(s1, s2, . . . , sn),

with xi = Hi(ti, gk(i), c) and ri = T − ti − gk(i) − c. Let Si(t, g, c) denote the test score
solution for pupil i. We thus have

Si(t, g, c) = Fi(Hi(ti, gk(i), c), T − ti − gk(i) − c) + Pi(S1(t, g, c), . . . , Sn(t, g, c)),

for all i in N .
First, for private instruction time, we have

∂Si(t, g, c)

∂tj
= 1[i = j](fixhit − fir) +

∑
ℓ∈N

piℓ
∂Sℓ(t, g, c)

∂tj
.

with fix = ∂Fi(xi,ri)
∂x

, fir = ∂Fi(xi,ri)
∂r

, hit =
∂Hi(ti,gk(i),c)

∂t
, and 1[i = j] equal to one if

the condition in brackets is true (and zero otherwise). Defining the n × n matrices
∇tS = [∂Si(t,g,c)

∂tj
], ∇tE = [1[i = j](fixhit − fir)], and ∇P = [pij], we get (in matrix

notation)
∇tS = ∇tE +∇P ∇tS.

Assuming Π = (I −∇P )−1 exists (with I the n× n identity matrix), we have

∇tS = Π∇tE,

or spelled out,

∂Si(t, g, c)

∂tj
=

∑
ℓ∈N

πiℓ(1[ℓ = j](fℓxhℓt − fℓr)) = πij(fjxhjt − fjr). (4)

Second, with respect to group instruction time, we have

∂Si(t, g, c)

∂gk
= 1[k(i) = k](fixhig − fir) +

∑
ℓ∈N

piℓ
∂Sℓ(t, g, c)

∂gk
.

Defining the n×m matrices ∇gS = [∂Si(t,g,c)
∂gj

] and ∇gE = [1[k(i) = j](fixhig − fir)], we
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get
∇gS = ∇gE +∇P ∇gS.

We now obtain
∇gS = (I −∇P )−1︸ ︷︷ ︸

Π

∇gE,

or spelled out,

∂Si(t, g, c)

∂gk
=

∑
j∈N

πij1[k(j) = k](fjxhjg − fjr) =
∑
j∈Nk

πij(fjxhjg − fjr). (5)

Third, with respect to classroom instruction time, we have

∂Si(t, g, c)

∂c
= fixhic − fir +

∑
j∈N

pij
∂Sj(t, g, c)

∂c
.

Defining the n× 1 vectors ∇cS = [∂Si(t,g,c)
∂c

] and ∇cE = [fixhic − fir], we have

∇cS = ∇cE +∇P ∇cS,

leading to
∇cS = (I −∇P )−1︸ ︷︷ ︸

Π

∇cE,

or spelled out,
∂Si(t, g, c)

∂c
=

∑
j∈N

πij(fjxhjc − fjr). (6)

The first-order conditions of the Lagrangian, with value function

V (s) = V (S1(t, g, c), . . . , Sn(t, g, c)),

are

∑
i∈N vi

∂Si(t,g,c)
∂tj

− λb + λt,j = 0, for j inN,∑
i∈N vi

∂Si(t,g,c)
∂gk

− λb + λg,k = 0, for k inM,∑
i∈N vi

∂Si(t,g,c)
∂c

− λb + λc = 0,

with vi =
∂V (s)
∂si

for all i in N .
Using equations (4), (5), and (6), the first-order conditions can be written as
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(fjxhjt − fjr)
∑

i∈N viπij − λb + λt,j = 0, for j inN,∑
j∈Nk

(fjxhjg − fjr)
∑

i∈N viπij − λb + λg,k = 0, for k inM,∑
j∈N(fjxhjc − fjr)

∑
i∈N viπij − λb + λc = 0.

B Proof of theorem 2

In case of instruction spillovers, the test scores are defined by

si = Fi(xi, ri),

with xi = Hi(ti, gk(i), c)+Pi(x1, x2, . . . , xn) and ri = T − ti− gk(i)− c. Let Xi(t, g, c)

denote the instruction solution for pupil i. We thus have

Xi(t, g, c) = Hi(ti, gk(i), c) + Pi(X1(t, g, c), . . . , Xn(t, g, c)),

for all i in N .
First, for private instruction time, we have

∂Xi(t, g, c)

∂tj
= 1[i = j]hit +

∑
ℓ∈N

piℓ
∂Xℓ(t, g, c)

∂tj
,

with hit =
∂Hi(ti,gk(i),c)

∂t
. We can define the n × n matrices ∇tX = [∂Xi(t,g,c)

∂tj
], ∇tH =

[1[i = j]hit], and ∇P = [pij], to obtain (in matrix notation)

∇tX = ∇tH +∇P ∇tX.

Assuming Π = (I −∇P )−1 exists (with I the n× n identity matrix) , we have

∇tX = Π∇tH,

or spelled out,
∂Xi(t, g, c)

∂tj
=

∑
ℓ∈N

πiℓ(1[ℓ = j]hℓt) = πijhjt. (7)

Second, with respect to group instruction time, we have

∂Xi(t, g, c)

∂gk
= 1[k(i) = k]hig +

∑
ℓ∈N

piℓ
∂Xℓ(t, g, c)

∂gk
,
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with hig =
∂Hi(ti,gk(i),c)

∂g
. Defining the n × m matrix ∇gX = [∂Xi(t,g,c)

∂gj
] and ∇gH =

[1[k(i) = j]hjg], we have
∇gX = ∇gH +∇P ∇gX.

We now obtain
∇gX = (I −∇P )−1︸ ︷︷ ︸

Π

∇gH,

or spelled out,
∂Xi(t, g, c)

∂gk
=

∑
j∈N

πij1[k(j) = k]hjg =
∑
j∈Nk

πijhjg. (8)

Third, with respect to classroom instruction time, we have

∂Xi(t, g, c)

∂c
= hic +

∑
j∈N

pij
∂Xj(t, g, c)

∂c
,

with hic =
∂Hi(ti,gk(i),c)

∂c
. Defining the n× 1 vectors ∇cX = [∂Xi(t,τ)

∂c
] and ∇c−rH = [hic],

we have
∇cX = ∇c−rH +∇P ∇cX,

leading to
∇cX = (I −∇P )−1︸ ︷︷ ︸

Π

∇cX,

or spelled out,
∂Xi(t, g, c)

∂c
=

∑
j∈N

πijhjc. (9)

The first-order conditions of the Lagrangian in equation (1), with value function

V (s) = V (F1(X1(t, g, c), r1), F2(X2(t, g, c), r2), . . . , Fn(Xn(t, g, c), rn)),

are ∑
i∈N vifix

∂Xi(t,g,c)
∂tj

− vjfjr − λb + λt,j = 0, for j inN,∑
i∈N vifix

∂Xi(t,g,c)
∂gk

−
∑

i∈Nk
vifir − λb + λg,k = 0, for k inM,∑

i∈N vifix
∂Xi(t,g,c)

∂c
−
∑

i∈N vifir − λb + λc = 0,

with vi =
∂V (s)
∂si

for all i in N .
Using equations (7), (8), and (9), the first-order conditions can be rewritten as
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∑
i∈N vifixπijhjt − vjfjr − λb + λt,j = 0, for j inN,∑

i∈N vifix
∑

j∈Nk
πijhjg −

∑
i∈Nk

vifir − λb + λg,k = 0, for k inM,∑
i∈N vifix

∑
j∈N πijhjc −

∑
i∈N vifir − λb + λc = 0.

C Survey questions

In this section, we provide a translation of the survey questions that are relevant for
our model.

C.1 Mathematics knowledge and skills assessment

• Current math level. If you had to assess the overall mathematics knowledge
and skills of your students today, how would you rate each of them? Answer
options: Very weak, Weak, Rather weak, Rather strong, Strong, Very strong

• Math level at begin of the year. How were the mathematics knowledge and
skills of your students at the beginning of this school year? Answer options:
Very weak, Weak, Rather weak, Rather strong, Strong, Very strong

• Language is a barrier for math. Indicate for your students whether language
skills form a barrier for the subject of mathematics. Answer options: Language
is not a barrier, Language is a slight barrier, Language is a significant barrier

• Math score on 100. If you were to test the overall mathematics knowledge and
skills of your students today, what score (a number between 0 and 100) would
each of them achieve? You may base this on the report cards from the past school
year.

• Individual instruction learning speed. Reflecting on the past school year,
if you were to explain a mathematics exercise individually to a student, how
quickly would each of them master this exercise? Answer options: Very slow,
Slow, Average, Fast, Very fast

• Classroom instruction learning speed. Reflecting on the past school year, if
you were to explain a mathematics exercise to the entire class, how quickly would
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each of them master this exercise? Answer options: Very slow, Slow, Average,
Fast, Very fast

• Self study learning speed. Reflecting on the past school year, if a student
were to work on a mathematics exercise independently, how quickly would each
of them master this exercise? Answer options: Very slowly, Slowly, Average,
Fast, Very fast

• Quantifying learning speeds: The following two questions are difficult and hy-
pothetical, but essential for our research. We ask you to answer them as carefully
as possible. This question concerns the learning speed of your pupils. Assume
you had extra time during the past school year, for example, an additional hour
for math lessons every week on Wednesday afternoons. There are three options
for how to use this time: Answer options: Class instruction time - You address
the entire class during the full extra hour (e.g., giving examples or reviewing
homework/tests together), Individual instruction time - You focus exclusively on
one pupil (or a small group) during the entire extra hour, for example, providing
remediation or extra challenges, while the other pupils work independently, Self
study - You do not address any pupil directly, allowing all pupils to process the
learning material or complete exercises independently.

• How much will a pupil with average learning speed progress in each case? For
example, the average learning speed pupil now has a score of 75. After an extra
hour of classroom instruction time they will have a score of 75 + X. Then X is what
you should fill in at classroom instruction time. Answer options: Progress of a
pupil with average learning speed in case of classroom instruction time, Progress
of a pupil with average learning speed in case of individual instruction time,
Progress of a pupil with average learning speed in case of self study.

• Afterwards we show them a matrix with all learning speeds (very slow, slow,
average, fast, very fast) and the three modes (class-room instruction, individual
instruction, self-study). The average learning speed is already filled in with their
previous answer.
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C.2 Time use data

• Class time allocation. In a typical week, what percentage of class time do you
use the following teaching methods: Answer options: Individual: addressing
a student or a small group of students, e.g., for remediation or extra challenge,
while other students work independently, Whole class: addressing the entire class,
e.g., to introduce a new concept or work through example exercises, Independent:
not addressing any student, with all students working independently.

• Individual instruction time. In a typical week, how often do you spend in-
dividual time with each of the following students for mathematics? Answer
options: Never, Almost never, Sometimes, Often, Almost always, Always

• Minutes per week. For the previous question about individual time spent
on mathematics, how many minutes per week do you have in mind for each of
these answer options: Answer options: Never, Almost never, Sometimes, Often,
Almost always, Always

C.3 Pupil demographics

• Fill in the following basic information for each student:

– Grade retention. Do they have grade retention? Answer options: Yes,
No

– Gender. What is their gender? Answer options: Male, Female, X

• These questions probe the educational disadvantage indicators of your students.
Please provide your best intuition.

– Dutch at home. Does this student speak Dutch at home?

– Mother has diploma. Does the mother of this student have a higher
secondary education diploma?

Answer options: Certainly not, Probably not, Probably yes, Certainly yes

C.4 Classroom information

• Grade. What grade is your class? (multiple answers possible, e.g., in the case
of a mixed-grade class for mathematics) Answer options: First grade, Second
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grade, Third grade, Fourth grade, Fifth grade, Sixth grade

• Class room set-up. What classroom setup do you usually use when your stu-
dents work independently on mathematics? Answer options: Everyone at a
separate desk, In pairs, with a fixed partner, In pairs, with a rotating partner, In
fixed groups, In rotating groups

• Group size. You answered that they usually work in groups. How large are
these groups? Answer options: Size of the smallest group?, Size of the largest
group?

• Main Formation If you use individual instruction time, do you mainly do this:
Answer options: One-on-one?, In (small) groups?, Both one-on-one as in (small)
groups?

C.5 Teacher background

• Finally, we will ask some questions about you, your teaching career, and your
background.

• Grade experience. How many years have you been teaching this grade (or these
grades)?

• Primary experience. How many years have you been teaching in primary
education?

• General experience. How many years have you been teaching in general?

– Gender. What is your gender? Answer options: Male, Female, X

– Education. What is your highest diploma? Answer options: Higher
secondary education, Professional bachelor, Academic bachelor, Academic
master, Other

• Finally, a question about your background when you yourself attended primary
school. These questions are again based on educational disadvantage indicators.

– Dutch at home. Did you speak Dutch at home when going to elementary
school?
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– Mother has diploma. Did your mother had a higher secondary education
diploma when you went to primary school?

Answer options: Certainly not, Probably not, Probably yes, Certainly yes

D Descriptive statistics for subsamples

This section provides a comparison of the descriptive statistics for the main sample,
the subsample used for testing the models (test sample), and the subsample used to
compute the marginal social welfare weights (msww sample). The representativeness
of these subsamples is assessed by comparing the ratio and distribution of some key
variables.

D.1 The test subsample

Table 7: Descriptive statistics for the test subsample

Variable N Mean Std.Dev Min Max
Female 1730.0 0.50 0.50 0.0 1.0
Grade retention 1806.0 0.15 0.36 0.0 1.0
Score 1805.0 75.90 18.38 0.0 100.0
Individual time 1806.0 65.56 86.83 0.0 1400.0
Progress individual instr 1806.0 12.02 14.04 0.0 92.0
Progress class instr 1806.0 6.76 9.82 0.0 90.0
Progress self study 1806.0 3.80 10.25 -5.0 90.0

Weak Rath. Weak Average Rath. Strong Strong
Math level now 176

(9.7%)
269

(14.9%)
565

(31.3%)
425

(23.5%)
371

(20.5%)
Math level begin year 217

(12.0%)
309

(17.1%)
569

(31.5%)
377

(20.9%)
332

(18.4%)
Cert. no Prob. no Prob. yes Cert. yes

Mother diploma 113
(7.5%)

193
(12.8%)

307
(20.3%)

897
(59.4%)

Dutch home 337
(20.5%)

197
(12.0%)

137
(8.3%)

973
(59.2%)

No issue Small issue Big issue
Dutch level 1158

(64.1%)
438

(24.3%)
210

(11.6%)

Table 7 shows the descriptive statistics for the test sample. Overall, this subsam-
ple appears to be representative of the main sample, with most variable distributions
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maintaining similar proportions.
For example, the gender distribution remains balanced, with males accounting for

approximately 49% in the main sample and 50% in the test sample. The distribution of
grade retention is also similar, with 19.4% of pupils having repeated a grade in the main
sample compared to 18.0% in the test sample. However, there are slight deviations in
academic performance and study progress measures. Pupils in the test sample show
slightly lower average progress across individual instruction (12.02 compared to 13.28)
and class instruction (6.76 compared to 7.91). Despite these differences, the overall
trends remain consistent.

Notable deviations are observed in the distribution of math level now and math
level begin year. In the main sample, 32% of pupils are classified as "Average" at the
current math level, while this percentage drops to 31% in the subsample. Similarly, the
proportion of pupils classified as "Strong" decreases from 20% in the main sample to
18% in the subsample.

D.2 The msww subsample

Table 8: Descriptive statistics for the msww subsample

Variable N Mean Std.Dev Min Max
Female 1189.0 0.51 0.50 0.0 1.0
Grade retention 1189.0 0.15 0.36 0.0 1.0
Score 1189.0 74.46 18.01 4.0 100.0
Individual time 1189.0 74.31 92.55 1.0 1400.0
Progress individual instr 1189.0 13.15 15.81 0.0 92.0
Progress class instr 1189.0 7.47 11.52 0.0 90.0
Progress self study 1189.0 4.14 11.60 -5.0 90.0

Weak Rath. Weak Average Rath. Strong Strong
Math level now 130

(10.9%)
199

(16.7%)
417

(35.1%)
263

(22.1%)
180

(15.1%)
Math level begin year 166

(14.0%)
219

(18.4%)
410

(34.5%)
225

(18.9%)
169

(14.2%)
Cert. no Prob. no Prob. yes Cert. yes

Mother diploma 94
(7.9%)

165
(13.9%)

228
(19.2%)

702
(59.0%)

Dutch home 203
(17.1%)

135
(11.4%)

89
(7.5%)

762
(64.1%)

No issue Small issue Big issue
Dutch level 784

(65.9%)
261

(22.0%)
144

(12.1%)
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Table 8 presents descriptive statistics for the subsample used to calculate the marginal
social welfare weights. This subsample also aligns well with the main sample in most
dimensions, but a few variables show noticeable differences.

The gender distribution remains balanced (49% male, 51% female), consistent with
the main sample. The distribution of dutch home and mother diploma categories re-
mains largely stable. However, the percentage of pupils categorized as having "No
issue" with Dutch proficiency is slightly higher in the msww sample (66%) compared
to the main sample (65%).

There are more pronounced differences in math level distributions. For instance,
the percentage of pupils with a "Strong" math level now drops from 20% in the main
sample to 15% in the msww sample, suggesting that this subsample may underrepresent
higher-achieving pupils. The average individual instruction time is also slightly higher
in the msww sample.

E Testing Separability

In our survey, we do not have data about the factors hjt, hjg, hjc, fjg and fjx, but only
about the products hjtfjx and hjcfjx. In the knowledge spillovers case, we only use the
products hjtfjx and hjcfjx, leaving us only to estimate hjgfjx. We estimate this in the
model to be between hjcfjx and hjtfjx, without further restrictions. With instruction
spillovers, however, we must know the products hjtfix and hjcfix to test the model. To
proceed, we assume that the ratio hjc

hjt
is constant across learning speeds (per class).

To test this separability hypothesis, we compare two models:

1. Restricted Model: The ratio is explained solely by teacher-specific effects, that
is,

hjc

hjt

= α + γj + εij,

where γj represents teacher fixed effects.

2. Unrestricted Model: The ratio is explained by teacher fixed effects and learning
speeds, that is,

hjc

hjt

= α + γj +
4∑

k=1

δkDik + εij,

where Dik are dummy variables for the different learning speeds.
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The null hypothesis is separability, that is, learning speeds do not affect the ratio:

H0 : δ1 = δ2 = δ3 = δ4 = 0.

We compare these nested models using an F-test.27

Table 9: ANOVA results with teacher fixed effects

Model df_resid SSR df_diff SS_diff F p-value

Restricted 364.0 33.163193 0.0 — — —
Unrestricted 360.0 30.588763 4.0 2.574430 7.574634 0.000007

Table 9 shows the results of the ANOVA test. The unrestricted model (including
both teacher fixed effects and learning speed fixed effects) shows a significant improve-
ment in fit over the restricted model (teacher fixed effects only). The F-statistic is 7.575
with a p-value of 0.000007, leading to rejection of the null hypothesis. We can therefore
reject separability.

F Time assignment

First, if the teacher indicated that the main classroom setup is primarily one-on-one,
we set all group times to zero and allocate one-on-one time to every pupil who receives
individual instruction. This applies to five classes.

Second, if the teacher indicated that they mainly work in small groups, we set all
group times to a positive number, except for the group of individuals who do not receive
any extra time. No one will receive one-on-one time. This applies to 26 classes.

Third, for the last and largest group (68 classes), where the teacher indicated that
they work both one-on-one and in groups, we use the following procedure. We first
calculate the available disposable time (tdisposable) as the product of the number of
weekly math hours, the number of minutes per class, and the percentage of individual
instruction, divided by 100. Additionally, we calculate Tgroup as the sum of unique
ti values. If tdisposable ≤ Tgroup, the individual time is allocated to the pupil with the
lowest marginal rate of technical substitution (MRTS, defined as fixhjc−fir

fixhjt−fir
) among the

pupils with the highest ti. Specifically, time is given lexicographically to the pupil with
the minimum MRTS among those with the maximum ti. If tdisposable > Tgroup, time is

27We use the standard analysis of variance (ANOVA) procedure implemented in Python.
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allocated lexicographically by giving it first to the pupils with the highest ti and second
to the pupils with the lowest MRTS. This is intended to represent the least restrictive
case.28 If there is still time left after assigning all time at a given ti level, the allocation
moves to the next highest ti. Once all pupils at a certain ti level receive individual
time, the group is assigned a strict positive λ̃g,k, as no additional time is allocated at
the group level.

G Regressions with instruction spillovers

Tables 10 and 11 show the regression results for instruction spillovers with fixed and
block peer effects. The magnitude of the coefficients is closer to the regressions with-
out peer effects, indicating that instruction spillovers have a smaller influence on the
estimated coefficients compared to knowledge spillovers. As with knowledge spillovers,
block peer effects make all estimates insignificant.

28Admittedly, this assignment might not be least restrictive, as we could prioritize pupils with the
lowest MRTS first.
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Table 10: Drivers of the marginal welfare weights (with fixed instruction peer effects)

Spec 1 Spec 2 Spec 3 Spec 4 Spec 5
Math level begin year
Rather weak -0.028

(-0.062, 0.001)
-0.028

(-0.057, 0.006)
-0.029

(-0.061, 0.000)
-0.031

(-0.066, 0.000)
-0.042

(-0.079, -0.014)
Average -0.047

(-0.093, -0.003)
-0.046

(-0.091, -0.004)
-0.046

(-0.090, -0.007)
-0.055

(-0.112, -0.014)
-0.067

(-0.113, -0.022)
Rather Strong -0.048

(-0.097, -0.003)
-0.050

(-0.102, -0.002)
-0.048

(-0.099, -0.003)
-0.059

(-0.126, -0.012)
-0.068

(-0.125, -0.022)
Strong -0.047

(-0.104, 0.019)
-0.049

(-0.098, -0.003)
-0.049

(-0.097, 0.016)
-0.062

(-0.125, -0.004)
-0.076

(-0.137, -0.011)
Female 0.001

(-0.018, 0.015)
0.002

(-0.015, 0.019)
0.001

(-0.016, 0.018)
0.002

(-0.018, 0.016)
Dutch home
Probably no -0.009

(-0.026, 0.010)
-0.012

(-0.029, 0.006)
-0.011

(-0.030, 0.007)
Probably yes 0.002

(-0.019, 0.025)
0.005

(-0.019, 0.033)
0.005

(-0.021, 0.031)
Certainly yes -0.000

(-0.020, 0.021)
-0.004

(-0.021, 0.017)
-0.002

(-0.021, 0.015)
Mother diploma
Probably no 0.025

(-0.011, 0.063)
0.024

(-0.009, 0.060)
Probably yes -0.024

(-0.087, 0.029)
-0.024

(-0.081, 0.025)
Certainly yes 0.021

(-0.020, 0.069)
0.016

(-0.017, 0.059)
Spline Yes Yes Yes Yes No
Teacher Fixed Effects Yes Yes Yes Yes Yes
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Table 11: Drivers of the marginal welfare weights (with block instruction peer effects)

Spec 1 Spec 2 Spec 3 Spec 4 Spec 5
Math level begin year
Rather weak -0.032

(-0.073, 0.003)
-0.031

(-0.070, 0.005)
-0.033

(-0.072, 0.001)
-0.034

(-0.076, 0.002)
-0.043

(-0.093, 0.001)
Average -0.050

(-0.121, 0.020)
-0.050

(-0.119, 0.019)
-0.050

(-0.119, 0.018)
-0.057

(-0.129, 0.012)
-0.066

(-0.161, 0.028)
Rather Strong -0.056

(-0.147, 0.043)
-0.059

(-0.149, 0.039)
-0.057

(-0.149, 0.042)
-0.066

(-0.161, 0.035)
-0.074

(-0.191, 0.052)
Strong -0.061

(-0.171, 0.054)
-0.063

(-0.166, 0.049)
-0.064

(-0.171, 0.048)
-0.074

(-0.183, 0.044)
-0.086

(-0.204, 0.046)
Female -0.001

(-0.021, 0.018)
-0.000

(-0.020, 0.019)
-0.000

(-0.020, 0.019)
-0.000

(-0.021, 0.019)
Dutch home
Probably no -0.012

(-0.041, 0.018)
-0.014

(-0.044, 0.013)
-0.013

(-0.045, 0.016)
Probably yes 0.002

(-0.034, 0.037)
0.005

(-0.033, 0.042)
0.005

(-0.034, 0.040)
Certainly yes -0.003

(-0.027, 0.021)
-0.005

(-0.029, 0.019)
-0.004

(-0.027, 0.020)
Mother diploma
Probably no 0.020

(-0.018, 0.061)
0.020

(-0.016, 0.060)
Probably yes -0.018

(-0.076, 0.032)
-0.018

(-0.072, 0.030)
Certainly yes 0.015

(-0.030, 0.062)
0.012

(-0.033, 0.057)
Spline Yes Yes Yes Yes No
Teacher Fixed Effects Yes Yes Yes Yes Yes
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